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Abstract

Motivation: Many real-world problems can be modeled as annotated graphs. Scalable graph algorithms that extract actionable information from
such data are in demand since these graphs are large, varying in topology, and have diverse node/edge annotations. When these graphs change
over time they create dynamic graphs, and open the possibility to find patterns across different time points. In this article, we introduce a scalable
algorithm that finds unique dense regions across time points in dynamic graphs. Such algorithms have applications in many different areas,
including the biological, financial, and social domains.

Results: There are three important contributions to this manuscript. First, we designed a scalable algorithm, USNAP, to effectively identify dense
subgraphs that are unique to a time stamp given a dynamic graph. Importantly, USNAP provides a lower bound of the density measure in each
step of the greedy algorithm. Second, insights and understanding obtained from validating USNAP on real data show its effectiveness. While
USNAP is domain independent, we applied it to four non-small cell lung cancer gene expression datasets. Stages in non-small cell lung cancer
were modeled as dynamic graphs, and input to USNAP. Pathway enrichment analyses and comprehensive interpretations from literature show
that USNAP identified biologically relevant mechanisms for different stages of cancer progression. Third, USNAP is scalable, and has a time
complexity of O(m + m¢log n; + nclog ne), where mis the number of edges, and n is the number of vertices in the dynamic graph; m, is the
number of edges, and n. is the number of vertices in the collapsed graph.

Availability and implementation: The code of USNAP s available at https://www.cs.utoronto.ca/~juris/data/USNAP22.

1 Introduction

With a continuous expansion of disciplines where large, an-
notated graphs are analyzed, there is a growing need for scal-
able algorithms that can extract meaningful and actionable
information from graph topology and node/edge annotations.
Time stamps are important annotations as many real-world
problems are dynamic and they evolve over time; dynamic
graphs are often used to model such problems. There are dif-
ferent graph representations that capture different granularity
of temporal information in dynamic graphs. For our pur-
poses, a dynamic graph consists of a set of time-ordered
graphs, and we refer to each graph that corresponds to a par-
ticular time stamp as a snapshot. In other words, a dynamic
graph consists of a set of snapshot graphs. In this article, we
propose a novel scalable algorithm such that given data mod-
eled as a set of snapshot graphs, the algorithm finds dense
regions that are specific to a given snapshot. A set of snapshot
graphs with 3M edges on a Linux machine with 2.60 GHz
Intel processor and 256 GB RAM took 9s to process. The
problem that we focused on in this article has broad

applications in the biological, social, and business domains.
For example, differentially co-expressed modules were identi-
fied when carcinogen-treated Eker rats were compared with
wild-type rats (Tesson et al. 2010); differential co-expression
gene clusters were detected in Alzheimer’s disease as well as in
inflammatory and infectious diseases (Amar et al. 2013).
Many studies have focused on mining and analyses of dy-
namic graphs. Much effort has been on the tracking of
changes in communities over time (e.g. Palla et al. 2007, Bhat
and Abulaish 2015). Operations of community transforma-
tions include birth, death, growth, contraction, merge, split,
continue, and resurgence (Rossetti and Cazabet 2018).
Finding dense subgraphs in dynamic graphs has also received
much attention. For example, Ma et al. (2019) detected dense
temporal subgraphs. Epasto et al. (2015) addressed the prob-
lem of finding densest subgraphs efficiently in dynamic
graphs. Galimberti et al. (2018) addressed the problem of
finding span-cores in temporal graphs. M-zoom (Shin et al.
2016) finds blocks that are dense in tensors. Furthermore,
community detection in dynamic networks has been much
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studied. For example, GraphScope (Sun et al. 2007) discovers
communities, and determines the changing points in time of
time-evolving graphs. DiTursi et al. (2017) identified local
communities in dynamic graphs. Some researchers have sum-
marized large dynamic graphs (e.g. Shah et al. 2015, Adhikari
et al. 2017). Others have directed their attention to finding
other dynamic graph mining patterns. For example, mining
periodic subgraphs in temporal graphs (e.g. Qin ez al. 2019,
Zhang et al. 2020) has been studied in social interactions.
Chan ef al. (2008) detected spatiotemporal changes that are
correlated in dynamic graphs. SpotLight (Eswaran et al.
2018) spots large dense subgraphs that appear or disappear
suddenly. SDREGION (Wong et al. 2018) finds subgraphs
such that their densities monotonically increase or decrease
across time. Semertzidis et al. (2019) addressed the “Best
Friends Forever” problem, which is to discover the most
densely connected subgraphs throughout all snapshots in a
graph history. They also addressed the problem of finding a
subset of nodes, and a subset of & snapshots such that the den-
sity function over these k snapshots is maximized. In this arti-
cle, we address a graph mining problem important for disease
progression analysis, i.e. to identify dense subgraphs that are
unique to a snapshot given a set of snapshot graphs. To evalu-
ate the algorithm, we generate a dynamic graph as described
in Section 4.1. Graphs representing cancer stages were input
into the proposed algorithm, and dense subgraphs unique to a
given tumor stage were identified.

There are different network representations that capture
various levels of granularity of temporal information
(Rossetti and Cazabet 2019). The “static” representation
aggregates dynamic phenomena into a single network, and is
unable to capture dynamics. The “snapshot networks” repre-
sentation uses a sequence of time-ordered networks to model
dynamic phenomena. A “temporal network” representation
provides a fine-grain description, and a complete view of net-
work dynamics. The choice of modeling data with snapshot
networks or temporal networks will require a different design
of analyses. If the data are already in network evolution states
or have discretized temporal information, such as a weekly/
monthly/yearly crawl of a search engine or the stages of can-
cer, then snapshot networks would be a natural choice. If the
data have more precise temporal information, such as phone
calls, emails, and short messages, then both temporal net-
works and snapshot networks can be used.

A class of algorithms for analyzing snapshot networks uses
a two-step approach. The first step is to independently iden-
tify static subgraphs for each snapshot network, and the sec-
ond step is to match the subgraphs obtained from individual
snapshots. While methods for static graphs can be directly ap-
plied in this class of approaches, there are drawbacks. The
major drawback is the instability of solutions from commu-
nity detection algorithms (Rossetti and Cazabet 2019). It is
widely acknowledged that various solutions exist for commu-
nity decomposition in complex networks, and that there is
not a single correct solution. The same algorithm executed on
the same network except for a few topological differences
may result in different solutions. In the case of stochastic algo-
rithms, different solutions may result from the same network.
Thus, it is not possible to distinguish if the changes across
time are due to the network evolution or due to the instability
problem. Second, the subgraph identification is based only on
the information of the current time step, and has no knowl-
edge of information from other time steps. Thus, this class of
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approaches may not be able to perceive more informed solu-
tions as a result of the confined scopes. Another class of
approaches for snapshot networks that circumvent the above
problems is to consider all snapshots at once, and identify the
desired subgraphs in a single step. In this article, we propose a
novel algorithm to identify dense subgraphs that are unique
to a particular snapshot using the snapshot networks repre-
sentation, and consider all snapshots at once in a single step.

A few network-based approaches for identifying gene ex-
pression differences between more than two conditions have
been proposed (e.g. Tesson et al. 2010, Ma et al. 2011, Amar
et al. 2013). COSINE uses a genetic algorithm to identify a
sub-network that has maximal alternation in expression pat-
terns (Ma et al. 2011). DiffCoEx finds differences in gene co-
expression between multiple conditions based on clustering
on a dissimilarity matrix (Tesson et al. 2010). Hierarchical
clustering was used in their analysis. DICER identifies gene
sets that are differentially correlated in one class when com-
pared with other classes using average-linkage hierarchical
clustering (Amar ef al. 2013). We propose a novel algorithm
that identifies dense unique subgraphs across time points in
dynamic graphs. There are major differences between these
approaches and USNAP. First, these approaches have a dif-
ferent objective than USNAP. We designed USNAP to solve
another dynamic graph mining problem, i.e. to identify dense
subgraphs that are unique to a snapshot given a set of snap-
shot graphs. Second, USNAP is scalable and runs in quasilin-
ear time (see Lemma 2), which is important as data continue
to grow. Third, methods discussed above are designed for ex-
pression data, but USNAP is designed for the broader interest
of complex graphs. The input to USNAP is a dynamic graph,
thus, any data that can be represented as graphs are applica-
ble, e.g. our algorithm can be applied to brain networks, so-
cial networks, communication networks, and financial
networks. USNAP looks for network structural differences
between different snapshots.

The scalability of USNAP is an important contribution.
USNAP runs in quasilinear time, and can process a set of
snapshot graphs with 3M edges on a Linux machine with
2.60 GHz Intel processor and 256 GB RAM in 9s. USNAP
can handle large graphs with fast response times.
Importantly, USNAP provides a lower bound of the density
measure in each step of the greedy algorithm.

USNAP has been designed to meet the needs of different
applications. The input to the algorithm is a set of snapshot
graphs. A snapshot graph is a graph with vertices and edges
as defined in Section 2.1. The set can be an ordered set, e.g.
when snapshots correspond to time stamps in a dynamic
graph. The set can also be an unordered set, e.g. when snap-
shots correspond to different conditions of some clinical
experiments. Furthermore, USNAP provides flexibility to the
definition of unique subgraphs (see Section 2.4). Some appli-
cations may be natural for a unique subgraph to have all
edges to be unique to a particular snapshot. Other applica-
tions may be natural for a unique subgraph to have most
edges to be unique to a snapshot but allows for a fraction of
edges to be shared with few other snapshots. The identified
subgraphs that are unique to a given snapshot are referred to
as usnaps.

While USNAP can be applied to any domain, we have ap-
plied it to four non-small cell lung cancer (NSCLC) gene ex-
pression datasets to show its effectiveness in identifying
biologically relevant subgraphs across individual stages of
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Figure 1. USNAP detects unique dense subgraphs in the ChitaleMA1 dataset. Usnap dO subgraph that is specific to stage 1A (d0 — 1A) is shown as open
circles, and usnap d7 subgraph that is specific to stage 3A (d7 — 3A) is shown as closed circles. d0 — 1A is only present in 1A, and not in any other
stages; d7 — 3Ais only present in 3A, and not in any other stages (see the corresponding d0 — 1A, d7 — 3Ain other disease stages). d0 — 1A s
composed of DNA repair genes, and the deregulation of DNA repair functions are important to initial stages of lung cancer showing that relevant cancer
mechanisms are captured in our results. d7 — 3A is composed of mitochondrial proteins with the majority being subunits of the ATP synthase. The
increase of ATP synthase activity is important for the migration and metastasis of cancer cells.

tumor progression. The stages of tumor in each dataset were
modeled as a dynamic graph, which was input into USNAP.
Dense subgraphs unique to a given tumor stage were identi-
fied. The effectiveness is shown through the pathway enrich-
ment analysis and detailed biological interpretation of the
usnaps. Both the pathway enrichment analysis and the de-
tailed study showed that usnaps returned by USNAP are
highly relevant to cancer, and they capture mechanisms at
different stages of tumor progression. In particular, usnaps
capture mechanisms related to DNA repair genes, neurotrans-
mitter receptors, voltage gated potassium channels, ATP syn-
thase, apoptosis, and mitochondria that align with literature.
Figure 1 and Supplementary Fig. S1 are usnaps that depict
mechanisms in different stages of lung cancer. For example,
two aspects of mitochondria producing energy to support the
fast proliferation of cancer cells are captured in the pathway
enrichment analysis and the detailed study, respectively. A de-
tailed discussion will be presented in Section 4.

2 Preliminaries and problem definition

In this section, we define the problem and introduce notations
that are used throughout the article. Section 2.1 states the
notations, and Section 2.2 defines the collapsed graph.
Section 2.3 introduces the objective function, and Section 2.4
states the exclusive threshold used in USNAP. Section 2.5
presents the problem definition.

2.1 Preliminaries

Let G = {G1,G,,...,Gr} be a set of T snapshot graphs. Let
Gy(Vy, E;), t € [1,T] denote a graph in G where V; is the set of
vertices, and E; is the set of edges in G;. Let e(u,v,i) denote
an edge with vertices u, v in snapshot i. Let m = ZlT(|Et\) de-
note the number of edges in G, and #» = |V| denote the number
of vertices in G, where V.= U, V,. Letu € {1...T} be the spe-
cific snapshot that is desired, and G, be the graph that repre-
sents snapshot u.

2.2 The collapsed graph
From G, a collapsed graph, G, is generated. Edges in snap-
shots {1..T} with the same vertices (a, b), where a,b € V will
be collapsed to form an edge, e(a,b) € E(G,) if e(a, b, u) is an
edge in E(G,,).

Let NoCond(e(a, b)) = ZzT:I f(e(a,b,i)) be the number of

snapshots that have an edge with vertices (a, b), where:

71) S E(Gt)

f(e(a7bai)): {0 (1)

G, is a weighted graph with the following weight function,
e € E(G,):

w(e)

T
2[1 + log(m)} e € E(G,) and NoCond(e) =1

1 +[ L
o8 NoCond(e)

e € E(G,) and NoCond(e) > 1
2)

The weight function is modified from the inverse document
frequency measure (Jones 1972) in the information retrieval
domain.

Let . be the number of edges in G, and 7, be the number
of vertices in G.. Let S, be a subgraph in G.. Let E,(S;) C
E(S.) st if e€E,(S.) then e€E(G,)ande¢ E(G))
where l € {1..T,] # u}, and e is called an u specific edge.
Note that E,, is not the same as E(G,,).

Let d,,(v) denote the number of u specific edges that v is in-
volved with in G,. Let d(v) denote the degree of vertex v in
G and d,(v) be the weighted degree of v in G
d,(v) = Zdu’u)eE(Gc) w(e). Let dyyy), . denote the minimum of
dw(v)Yv € V(G,), and d,,,,, d(v),,, be d.(v), d(v), respec-
tively for this particular v. Let N(v) denote the set of neigh-
bors of v in G.. Let mass(G,.) denote 3, g, w(e)-

2.3 Objective function

We extend the classic density function (Charikar 2000) to
weighted graphs as the objective function:

density(G,) = V(G

3)

The desired property of the objective function is to return
dense subgraphs such that if two subgraphs have the same
number of nodes, the subgraph with the higher mass is denser
than the other. Formally, let S.,S. be two subgraphs in G,
such that |V(S.)| = |V(S.)| and mass(S;) > mass(S.), then
density(S.) > density(S.). This objective function satisfies the
desired property. Recall that weights in the edges of G, reflect
the importance of the edges in terms of their uniqueness.
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2.4 Exclusive threshold

The subgraphs returned have to maximize the objective func-
tion, and have to satisfy the exclusive threshold. The exclusive
threshold is that the fraction of edges in the subgraph specific
to u has to be at least a predefined threshold from the input
parameter. Formally, the exclusive threshold is:

|Ew(So)]
[E(Se)|

>7€(0,1], (4)

where S, is a subgraph in G..

2.5 Problem definition

Given a set of snapshot graphs, G, the desired unique snap-
shot, #, the number of subgraphs, k, find k subgraphs that

1) maximize the objective function, density
2) the exclusive threshold is satisfied.

3 Materials and methods
3.1 Algorithm

USNAP is a heuristic algorithm, since naive enumeration of
all possible subgraphs is combinatorial, which is not scalable.

USNAP first generates a collapsed graph, G, from G, a set
of T snapshot graphs. USNAP then starts with the entire col-
lapsed graph, and finds one usnap in each iteration. USNAP
then removes the discovered usnap from G., and continues to
search for another usnap. Pseudo code and design details of
USNAP are in the Supplementary Material.

The weights of the edges of the collapsed graph reflect the
importance (uniqueness) of the edges. Intuitively, higher
weight edges mean that fewer snapshots have these edges
while lower weight edges mean that more snapshots have
these edges. u specific edges will have the highest weight.
Since the goal of USNAP is to find dense subgraphs that are
specific to a snapshot, the weight function in the collapsed
graph is designed so that USNAP is biased toward picking
edges with unique or few snapshots.

USNAP begins with G., and greedily searches for unique
dense regions. USNAP removes a vertex at a time, greedily
selecting a vertex according to Lemma 1. USNAP then returns
a graph configuration that has the maximum density value,
and satisfies the exclusive threshold.

Lemma 1. The removal of v € V(G,) such that
du(v)
dw(v)(l + S

) is minimized results in

mass(G.) — d,,(v)
V-1

min > density(GL)

mass(Ge) — 2d, (V) i

where G is a collapsed graph such that V(G.) = V(G,) \ {v}.
More information and the proof to Lemma 1 can be found
in the Supplementary Material. Our goal is to maximize
“density” while satisfying the exclusive threshold. The opti-
mal value for density(G.) would be to subtract d,,(v),,;, from

mass(G.) in the numerator resulting in density(G.) =

%. Lemma 1 proves that in each step of the
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greedy algorithm, density(G.) could attain to the optimal

mass(G.)—2d,, (V)
e i, Note that

the lower bound is to subtract two times d,(v),,;,
mass(G.) while the optimal value would be to subtract
diw (), from mass(G,) in the numerator. The function that

is used to select which v to remove in V(G,) in Lemma 1 has

two aspects: d,,(v) is to have dense subgraphs, and (1 + %)

value and would not be worse than

from

is to discourage the removal of nodes that have u specific

edge(s). The more u specific edges v has, the greater (1 +

d,(v .
d(<1/)) ) will be.

3.2 Time complexity and scalability

Lemma 2. USNAP has a time complexity of
O(m+ m logn, + n logn,).

Recall that 71 is the number of edges in G, and 7 is the number
of vertices in G. m, is the number of edges in G, and 7, is the
number of vertices in G.. The proof of Lemma 2 can be found
in the Supplementary Material.

Since m, < m and n, < n, the time complexity of USNAP
in terms of the number of edges and number of vertices in the
input set of T snapshot graphs is O(mlogn + nlogn).
Expressing the time complexity with m., 1. provides a tighter
bound for USNAP.

USNAP is designed to be quasilinear time O(mlogn).
Figure 2 shows the actual running time for USNAP to return
five usnaps with no restart, no fraction of vertices to remain
and the exclusive threshold is one. The different sizes of
graphs were generated by down-scaling the correlation graphs
of the chitaleMA1 dataset. USNAP was implemented in Java.
A machine with 256 GB RAM, and Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60 GHz, x86_64, CentOS Linux 7 (Core)
was used for all experiments.

4000 6000 8000

Elapsed real time (millisec)

2000

T T T
2000000 2500000 3000000

500000 1000000

1500000
Number of edges

Figure 2. The runtime of USNAP. The actual runtimes are shown as black
circles, O(m?) is shown as the solid line, and O(mlogm) is shown as the
dashed line. The important point to note is the comparison of different
complexity functions in relation to the input size, and not the actual
seconds that a given input size took. This is because the number of
seconds for a given input size will change from machine to machine.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad477#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad477#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad477#supplementary-data

USNAP

4 USNAP validation on NSCLC datasets

While USNAP is generic, and can be applied in any domain,
we applied it to gene expression data to model different stages
in tumor progression. Four NSCLC microarray gene expres-
sion datasets, referred to as ChitaleMA1, ChitaleMA2,
Okayama, and Raponi, were used to demonstrate the effec-
tiveness of USNAP. Refer to the Supplementary Material for
more information regarding the data used.

Section 4.1 describes the input to USNAP. Section 4.2
presents results returned by USNAP with exclusive threshold
equals one, with no restart, and no fraction of vertices to re-
main. We used a detailed study (Section 4.3) as well as path-
way enrichment analyses (Section 4.4) to show that the
identified usnaps are biologically meaningful, and are relevant
to the different stages in the progression of cancer.

4.1 Input to USNAP

The input dynamic graph has T snapshots that correspond to
the T stages of NSCLC in a dataset. Dynamic graphs were
constructed by annotating physical protein interaction net-
work for each individual stage, and considering only highly
correlated genes overlapping with interactions. In this article,
we assumed that the dynamic graphs have been generated,
and are taken to be the input to USNAP. Refer to
Supplementary Section S2 for more information on the input
dynamic graphs and their construction. The input dynamic
graphs are also available at https://www.cs.utoronto.ca/~ju
ris/data/USNAP22.

4.2 USNAP's results

Supplementary Tables S2-S5 show the top 10 (or less if there
were less results) densest usnaps having more than two nodes
that are specific to Stages 1A, 1B, 2 or 2B, and 3A for each
dataset, respectively. The tables are in sorted order of density
with dO being the densest usnap for each stage and for each
dataset. All results are available at https://www.cs.utoronto.
ca/~juris/data/USNAP22.

Importantly, for all usnaps from all four datasets, the edges
that are specific to a stage do not appear in any other stages
in the same dataset. For example, usnap d0 in Raponi has a
clique with 15 edges that are specific to Stage 2B (depicted in
closed circles in Supplementary Fig. S1). Out of these 15
edges, no edge is present in Stage 1A, 1B or 3A of Raponi.

Figure 1 depicts usnaps that are specific to Stages 1A and
3A in chitaleMA1. Usnap dO that is specific to 1A (in open
circles) is densely connected within the usnap. Notice that
none of these edges are present in Stages 1B, 2B, or 3A.
Usnap d7 that is specific to 3A (in closed circles) is also
densely connected within the usnap in Stage 3A. Once again,
none of these edges are present in Stages 1A, 1B, or 2B.

4.3 Detailed analysis and interpretation of usnaps

We performed a comprehensive interpretation and analysis
on usnaps. USNAP captured different mechanisms for differ-
ent stages of cancer, validating usnaps’ meaningfulness to tu-
mor progression.

4.3.1 Observation for Stage 1A: captured risk factor that is
implicated for lung cancer

Usnap dO specific to Stage 1A from the Raponi dataset
(Supplementary Fig. S1) is composed of genes implicated in
asthma. TAS2Rs are bitter taste receptors expressed in the hu-
man bronchus, airway epithelial cells and lung macrophages

(Grassin-Delyle et al. 2019). TAS2Rs have been implicated in
airway defense mechanisms and are found to be elevated in
patients with asthma. Serotonin and its receptors (e.g.
HTRS5A) have been implicated in the pathophysiology of
asthma, and have been shown to regulate cytokine release in
airway epithelial cells (Bayer ef al. 2007). Polymorphisms in
SLC6A7 have been linked to asthma (Kim ez al. 2010),
MLLT1 has been shown to be hypermethylated in allergic
asthma (Cardenas et al. 2019) and GPR31 in non-atopic
asthma (Kim ez al. 2013). Asthma has been implicated as a
risk factor for lung cancer, but mainly for the squamous cell
carcinoma histology (Rosenberger et al. 2012). Interestingly,
d0 is from the Raponi dataset, the only dataset among the
ones analyzed that is squamous cell carcinoma data.

4.3.2 Observation for Stage 1A: DNA repair function affected

Usnap dO specific to Stage 1A from the ChitaleMA1 dataset is
composed of DNA repair genes (Fig. 1). Most belong to the
double strand break repair systems (BRIP1, BRCA1, RPA1,
and BARD1) or are responsible for signaling DNA damage
(ATR and TOPBP1), while the remaining belong to other
DNA repair systems (mismatch repair, non-homologous end
joining, and single strand break repair) (Chatterjee and
Walker 2017). DNA repair is particularly important in the
lungs, as their tissue is continuously exposed to a variety of
insults that can induce DNA damage. DNA repair genes lead
to repair of DNA and are fundamental for cell cycle progres-
sion. When such genes are mutated, the DNA can accumulate
mutations and start the carcinogenic process (Mamdani and
Jalal 2016). It is then obvious to find DNA repair function
deregulated starting from the initial stages of lung cancer.

4.3.3 Observation for Stage IB: neurotransmitter receptors
are highly active in early stages of tumor progression

Usnap d0 (GABRG3 GABRD GABRR2 HTR3A CHRNA10
GLRA3 CHRNA6 CHRND HTR3B) from the ChitaleMA1
dataset identified by USNAP to be specific to Stage 1B is com-
posed of neurotransmitter receptors (GABA—GABRGS3,
GABRD, GABRR2; serotonin—HTR3A/B; cholinergic—
CHRNA10, CHRNA6, CHRND; and glycine—GLRA3).
The neurotransmitter acetylcholine (ACh) acts as an autocrine
growth factor for human lung cancer. ACh receptors mediate
the cancer growth effect on lung of nicotine, the addictive
component of cigarette smoke. It has been shown that ACh
receptors are highly expressed in early stages of carcinogene-
sis and as the tumor progresses to more advanced stages the
expression decreases, leaving other pathways to control tu-
mor growth (Friedman ez al. 2019).

Furthermore, GABA’s most known function is as a neuro-
transmitter in the brain, but it has been shown to be expressed
and involved in the development of other tissues. GABA
receptors have been shown to be highly expressed in early
stages of NSCLC, but not in advanced stages, and a reduced
expression of such receptors leads to worse survival (Zhang
etal. 2013).

4.3.4 Observation for Stage 1B: voltage gated potassium
channel linked to the initial stages of tumor growth and
proliferation

Usnap d1 (GRIA2 KCNC1 KCNF1 KCNS1 KCNJ14
KCNH6 KCNQ4 CNGB3) that is specific to Stage 1B from
the ChitaleMA1 dataset, with 8 nodes and 24 edges, is com-
posed mostly of potassium channels. Potassium channels are
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pore-forming transmembrane proteins that let potassium flow
through the membrane. They are involved not only in the ob-
vious control of the membrane potential and cell excitability,
but also in the regulation of cell proliferation, migration, and
apoptosis. Potassium channels are expressed in many healthy
and cancer cells, and in the latter they are involved in cancero-
genesis as well as metastasis formation (Comes et al. 2015).
Potassium channels have been shown to be potential bio-
markers in lung cancer and their overexpression has been
linked to a lower survival rate. Interestingly, voltage gated po-
tassium channels, the ones present in this usnap, have been
linked to the initial stages of tumor growth and proliferation
(Bulk ez al. 2020).

4.3.5 Observation for Stage 2B: embryonal development
genes that linked to lung cancer progression

Usnap d0 (RORA HOXA2 PAX6 LEF1 HOXA11 HOXBI1
LHX1 MSX2 BMP4 EVX1 POU2F1 EN2) from the
ChitaleMA1 dataset that is specific to Stage 2B is composed
of transcription factors linked to embryonal development.
The majority belong to the homeobox gene family (HOX), a
set of genes that regulate growth and organogenesis. HOX
genes are expressed in healthy human lungs and play a crucial
role in their development. It has been shown that many HOX
genes are expressed and involved in lung carcinogenesis, and
that a different set of HOX genes is activated compared to
normal lung, but the number of expressed HOX genes
decreases with increase of malignancy, suggesting that pro-
gression of lung cancer is linked to loss of HOX gene expres-
sion (Kappen 1996).

4.3.6 Observation for Stage 3A: ATP synthase involves
cancer metastasis in later cancer stages

Usnap d7 from the ChitaleMA1 dataset specific to Stage 3A is
composed of mitochondrial proteins (Fig. 1). The majority are
subunits of the ATP synthase. Metabolism is notably altered
in cancer cells, and metabolic reprogramming leads to in-
crease in glucose uptake and glycolysis, and consequent gen-
eration of ATP and lactic acid in the cytosol. Mitochondria
need to produce energy through oxidative phosphorylation,
regulated by mitochondrial ATP synthase, to support the fast
proliferation of cancer cells. It has been shown that the inhibi-
tion of ATP synthesis can slow cancer proliferation. In later
cancer stages, ATP synthase is involved in cancer progression
and metastasis. In fact, it has been shown that oxidative phos-
phorylation increases in migrating cancer cells, compared to
cells from the primary tumor (Galber et al. 2020). The pres-
ence of this usnap at stage 3A suggests that the interactions
among ATP synthase subunits are being identified because of
the increase of ATP synthase activity to favor migration and
metastasis of the cancer cells.

4.4 Pathway enrichment analysis of usnaps

In addition to the detailed study in Section 4.3, pathway en-
richment was used to evaluate the biological meaning of the
results from USNAP.

Literature curated pathways from pathDIP (Rahmati et al.
2020) version 4 were used. The pathway enrichment analysis
was performed using hypergeometric tests for each pathway
and for each unioned usnap. Usnaps for each dataset and for
each stage were unioned. The universes used for the hypergeo-
metric tests were the genes in the chipset for each dataset. P-
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values were adjusted for multiple testing using the false dis-
covery rate with a threshold of 0.05.

Our findings show that usnaps capture meaningful and
stage-specific biological functions in the progression of lung
cancer. Some biological functions are over-represented in
early stages of cancer, while others are over-represented in
later stages.

Pathways specific to a given stage, and those present in two
datasets at the given stage are presented in Table 1. Each
P-value in Table 1 is the largest P-value among the datasets.
Table 1 displays the Top 6 (or less when fewer enrichments
are available) specific pathways ranked according to the larg-
est P-value. Refer to Supplementary Tables S6-S9 for the full
lists of specific pathways.

Stage 1A has apoptosis-specific pathways. Apoptosis is one
of the pathways that is found altered in early stages, both in
NSCLC and small cell lung cancer, and is linked to worse
prognosis (Lu et al. 2020).

In Stage 1B, there is an overlap between the lung cancer sig-
nal and HIV-1. It is known that lung cancer is the most fre-
quent malignancy non-related to AIDS in patients with HIV.
It has been shown that HIV-1 Nef protein modifies fibroblasts
and normal epithelial cells to activate the initial stages of lung
cancerogenesis (Santerre et al. 2019).

In Stage 3A, parkin-ubiquitin proteasomal system is
enriched. Parkin has been shown to be highly expressed in
lung cancer, and its expression increases with tumor progres-
sion. Parkin binds and degrades p21 preventing its function
as inhibitor of cell cycle progression (Park et al. 2019).

Mitochondria need to produce energy through oxidative
phosphorylation, regulated by the mitochondrial ATP syn-
thase, to support the fast proliferation of cancer cells. USNAP
is able to capture this mechanism in Stage 3A in both the de-
tailed analysis (Section 4.3) as well as the pathway enrichment

Table 1. Pathway specific to a given stage.

Stage Pathway P-value
1A WikiPathways-dna mismatch repair .0014
1A REACTOME-apoptosis .0020
1A BioCarta-the prc2 complex sets long-term gene .0042
silencing through modification of histone
tails
1A WikiPathways-the effect of progerin on the in- .0066
volved genes in hutchinson-gilford progeria
syndrome
1A REACTOME-mitotic metaphase/anaphase .0143
transition
1A BioCarta-caspase cascade in apoptosis .0188
1B BioCarta-hiv-1 defeats host-mediated resis- .0082
tance by cem15
1B REACTOME-interactions of rev with host cel- .0132
lular proteins
1B REACTOME-early phase of hiv life cycle .0491
20r2B IPAVS-gp130-jak-stat 4.45E-05
20r2B KEGG-th1 and th2 cell differentiation 5.27E-05
20r2B  INOH-cd4 ¢ cell receptor signaling-erk cascade 8.16E-05
20r2B  WikiPathways-t-cell receptor and co-stimula- .0001
tory signaling
20r2B REACTOME-piSp, pp2a and ier3 regulate .0010
pi3k/akt signaling
20r2B REACTOME-regulation of kit signaling .0013
3A WikiPathways-parkin-ubiquitin proteasomal .0191
system
3A WikiPathways-electron transport chain .0496

(oxphos system in mitochondria)
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analysis. First, in Section 4.3, we presented usnap d7 from the
ChitaleMA1 dataset that is specific to stage 3A (Fig. 1). The
majority of this usnap is composed of subunits of the ATP
synthase. We mentioned in Section 4.3 that the presence of
this usnap at Stage 3A suggests that the identification of inter-
actions among ATP synthase subunits are due to the increase
of ATP synthase activity to favor migration and metastasis of
the cancer cells. Second, in the pathway enrichment analysis,
the oxidative phosphorylation pathway is one of the path-
ways enriched that is specific to Stage 3A. It has been shown
that oxidative phosphorylation increases in migrating cancer
cells when compared to cells from the primary tumor (Galber
et al. 2020).

5 Conclusions

There are three main contributions to this manuscript. First,
we designed a novel algorithm, USNAP, that is scalable and
effective in identifying dense subgraphs that are unique to a
snapshot given a set of T snapshot graphs. Importantly,
USNAP provides a lower bound of the density measure in
each step of the greedy algorithm. Second, USNAP is effective
in real data where insights and understanding were obtained.
While USNAP can be applied to any domain, we applied it to
four NSCLC datasets and found meaningful results. Third,
USNAP is scalable, and has a time complexity of O(m +
m¢logn, + n.logn.) where m is the number of edges, and # is
the number of vertices in the set of T snapshot graphs; 1, is
the number of edges, and 7, is the number of vertices in the
collapsed graph. A re-formulation of our proposed problem
into a convex optimization problem could be a beneficial fu-
ture contribution.

In this article, we have applied USNAP to lung cancer data-
sets to show its effectiveness in different stages of tumor pro-
gression. Stages of tumor were modeled using dynamic
graphs. A detailed study as well as pathway enrichment analy-
ses were used to show that usnaps returned by USNAP are in-
formative, as they capture mechanisms at different stages of
tumor progression. In particular, usnaps capture mechanisms
related to DNA repair genes, neurotransmitter receptors, volt-
age gated potassium channels, ATP synthase, apoptosis, and
mitochondria that align with literature.
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